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A backflow effect in smectic C liquid crystals in 
a bookshelf geometry 

by P. J. BARRATT and B. R. DUFFY* 
Department of Mathematics, University of Strathclyde, Livingstone Tower, 

26 Richmond Street, Glasgow G1 IXH, UK 

(Received 19 April 1996; accepted 26 July 1996) 

We consider the instability that is induced when a large (supercritical) magnetic field is 
applied to a sample of smectic C liquid crystal held between parallel plates in a bookshelf 
geometry, with strong anchoring at the cell walls. Using a recently proposed dynamic theory, 
we solve the full linearized equations (with transportation of material between the smectic 
layers allowed) to show that the backflow that is induced has components both parallel and 
perpendicular to the layers, in contrast with the assumptions of Carlsson et al. The 
corresponding growth rate of the instability is obtained in terms of the applied field strength 
and material parameters. 

1. Introduction 
The use of smectic C liquid crystals in the development 

of electro-optical devices [ 1) has been the motivation 
for an extensive study of the director dynamics in these 
materials for more than a decade. In the absence of a 
viable dynamical theory, investigations have generally 
assumed that there is no coupling between macroscopic 
flow and director reorientation in these layered materials. 
However a recent paper by Leslie et al. [2] proposes a 
fully dynamic continuum theory for such materials, 
utilising the simplifying assumptions that the layer thick- 
ness remains constant and that the tilt of the director 
with respect to the layer normal remains unchanged. 
Employing this theory Carlsson et al. [3] investigated 
the importance of backflow on the switching behaviour 
of surface stabilized ferroelectric liquid crystal cells, while 
Leslie and Blake [4] examined its effect upon orienta- 
tional relaxation in smectic C liquid crystals. However 
in their analysis Carlsson et al. [3] imposed the addi- 
tional constraint that the velocity field is everywhere 
perpendicular to the layer normal, which means that the 
transportation of material between layers cannot occur. 
Although this further assumption simplifies the analysis, 
the solution found by Carlsson et al. [3] does not satisfy 
the linear momentum equation in the theory. In fact the 
introduction of an extra condition renders the system 
overdetermined. 

In this paper we re-examine the problem that was 
considered by Carlsson et a/. [3] in which a relatively 
large magnetic field is suddenly applied across a sample 
of smectic C liquid crystal in equilibrium in a bookshelf 

*Author for correspondence. 

alignment between two large, parallel, horizontal flat 
plates. After giving a brief outline of the continuum 
theory in 4 2, we formulate the problem for the particular 
type of FrCedericksz transition under consideration in 
terms of a linear stability analysis in 53.  However we 
choose to follow Leslie and Blake [4] and permit 
transportation of material between the layers. Although 
this leads to a rather more complicated system of 
equations than in [3], it is shown in $ 4  that a similar 
method of solution yields results that appear to be 
qualitatively the same as those in [ 31, but are, of course, 
quantitatively different. Furthermore the solution pre- 
sented here (unlike the one in [3]) satisfies the full set 
of continuum equations proposed by Leslie et al. [2]. 

2. The continuum equations 
In this section we present a brief summary of the 

phenomenological equations governing the elastic- 
hydrodynamic behaviour of smectic C liquid crystals 
proposed by Leslie et al. [2]. Assuming that the smectic 
material consists of uniform layers with a fixed tilt of 
the alignment with respect to the layer normal, the 
constrained continuum theory introduces two orthonor- 
ma1 vectors to describe the smectic layered configuration. 
One is the unit normal to the layer a and the other is a 
unit vector c that is parallel to the layers and describes 
the direction of the tilt of the molecular alignment. Thus 
a and c must satisfy the constraints 

a - a = l ,  c - c = l ,  a - c = O ,  ( 1 )  

while the further assumption that the medium is free of 
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defects imposes the additional constraint 

curl a = 0. ( 2 )  
With the assumption of incompressibility, the additional 
equations required to determine a, c and the velocity 
vector field v are, in Cartesian tensor notation, the 
constraint 

I1i. j  = 0, ( 3 )  

(4) 

the linear momentum equation 

prj, = -I?. , I  + 2". J 1.1 . + 2 ' ~ .  J J . 1  . + f . .  lJ .J '  . 

and the angular momentum equations 

and 

(""1 - ?+ gf + G; + ~a~ + zci = 0, 
a q j  .,i aci 

Here p is the constant density, F~~~ is the alternator and 

a superposed dot indicates a material time dcrivative. 
The arbitrary scalar functions p,y, T, K and arbitrary 
vector function arise from the constraints (3), (1)  and 
( 2 ) ,  respectively, while G" and Gc denote any generalized 
external body forces acting and H ,  represents the energy 
per unit volume due to the presence of any electric or 
magnetic field. Of particular importance to this paper 
are those forces associated with an applied magnetic 
field H which take the form 

( 8 )  
where za denotes the anisotropic part of the magnetic 
susceptibility (assumed constant), and x is the fixed tilt 
angle between the layer normal a and the average 
molecular alignment n, with n = a cos a + c sin CI. Also W 
is the elastic stored-energy per unit volume, taking the 
form [4] 

G" = za ( H  - n)H cos a, G' = za(H - n)H sin x ,  

2w= K ' ; ( U i , J 2  + K'l(CJ + K;(ciui,j")z 

+ K',ci, jci, j + K s  ~i,jcjci,kc, 

+ 2Kf;a i . i (~ ja j .kck)  + 2Ksci, j~.j~.i ,k~ik 

+ 2K';'ei.i(cjU,j.kCk) + 2K7ui,ic,i, j .  ( 9 )  

The theory thus provides 16 equations (1)-(6) to deter- 
mine the sixteen variables ui7 c i ,  ui ,  p i ,  p,  y, JC and z. If 
one follows Carlsson et al. [3] in introducing the extra 
equation v - a = 0 into the theory, the system becomes 
overdetermined and it is generally not possible to find 
solutions that satisfy all the equations, even for the 
simplest of experimental arrangements (as illustrated by 
the analyses of Carlsson et al. [3] and Leslie and Blake 
[4]). For this reason we do not adopt this additional 
constraint, and hence we allow the transportation of 
material between layers. 

3. Formulation of the problem 
Suppose a sample of smectic liquid crystal is confined 

between two large, horizontal flat plates with the uniform 
layers perpendicular to the bounding planes. We assume 
that the direction of the tilt angle is uniform throughout 
the sample, and consider the application of a uniform 
magnetic field H applied perpendicular to the initial 
uniform molecular alignment. Cartesian coordinate axes 
are chosen so that the upper and lower plates occupy 
the planes z = d / 2  and z = - d/2, respectively, the normal 
a to the layers is in the x-direction, and the applied 
magnetic field is given by 

H=(O,O.H), (10) 

where H is a constant. 
The uniformly aligned equilibrium configuration 

v = O ,  a=(1,0,0) ,  c=(O.l ,O) (11) 

(with jj being a constant p o )  is one obvious solution of 
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the equations (1)-(6), and it is well known that this 
configuration obtains until H exceeds a critical value I f c  
given by H, = ( (Ki  + K;)/~~)”’(n/d sin a), when a 
FrCedericksz transition occurs. Here we are interested in 
the initial dynamics associated with this instability, in 
particular the effect of backflow when a magnetic field 
with strength H > H ,  is suddenly applied across the 
sample. Since we are concerned only with the dynamics 
at the start of the instability, we seek solutions of the 
form 

v = HZ, t), ~ ( z ,  t), 01, a = ( ~ , o , o ) ,  c = ( 0 ~ 1 ,  i ( z ,  t ) ) ,  
( 1 2 )  

with p” = po + 8, where 12, ri, 8 and p and their derivatives 
are small compared to unity. One observes that, as is 
customary, the layer normal is assumed to remain fixed 
in its initial direction. With (12), the constraints (1)-(3) 
are satisfied identically, and a linearization of equations 

(15) 

together with 

K = z = 0, 8 = constant. (16) 

Introducing non-dimensional variables 2, f, U and V 
defined by 

f15 
z=.fd, t = xa H: sin’ M ’ 

(17) dx,H: sin2 M dxa H z  sin’ M a=u “ , ri=V “ 
A5 A5 

(well-defined since I ,  > 0) and seeking solutions of the 
form 

8 = &Z”)es‘, U = ii(,?)e”, V =  6(.f)e”, (18) 

where s is a constant dimensionless growth rate, we find 
that the system of equations (13)-( 15) becomes 

(Dz - Al)$ - nZA2Du” - n2A3D6 = 0, (19) 

D2u“ + A,  D26 + 2A5sD$ = 0, 

A6D2u” + D26 + 2A7sD$ = 0, 

( 2 0 )  

(21) 

where 

po + p4 + 22’ + i 5  
A,  = 

H 2  
H:’ 

h’ = - J 
and 1) = d/dP. For convenience the tildes will now be 
dropped. 

We assume that at the bounding plates, the director 
fields satisfy a strong-anchoring condition and the 
velocity field satisfies a no-slip condition, so that 

4. Solution 
Extending a method employed by Brochard et al. [ 51 

and subsequently Carlsson et al. [3], we seek solutions 
having the form 

4 =,.(c0s~z-c0s(;~)), 

u=uo(sinqz-2zsin(fq)), 

u = u,,( sin qz - 22 sin( i q ) ) ,  

with q non-zero. The boundary conditions (23) are 
automatically satisfied, and substitution of ( 2 4 )  into 
(19)-( 21) yields the linear algebraic equations 
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(29) 

Equations (26)-(29) constitute a linear algebraic 
system of the form 

MQ,=O, Q,=(40,u, ,~,)T, (30 )  

where M is a 4 x 3 matrix and the exponent T denotes 
a transpose. The conditions for this system to have a 
non-trivial solution 0 are simply 

X - t a n X  1 ’ 2 

(310,b) 

where 

1 
2 

x:=-q, 

A:= JA,(A,  - ’44’4,) + A3(A, - AsAs) ) / (  1 - A,&). 
(32) 

The formal solution can now be complcted by taking 
the divergence of (S), solving the resulting differential 
equation for y, and then using (5) to determine curlp, 
if desired. 

Equation (31) gives the ‘wavenumber’ X implicitly in 
terms of the applied field h, and also gives the growth 
rate s parametrically in terms of h (with parameter X). 
By elimination of X the h-s relation may alternatively 
be written in the implicit form 

= -‘K(h2 - 2s + 2As)”2(h2 - 2s). 4 

Surprisingly the results in (31) have the same general 
structure as equations (55)-(56) of Carlsson et al. [ 3 ] ,  
but with a different expression for the parameter A in 
terms of viscosities. (Superficially the results look differ- 
ent; however their parameter /3 is not a constant: it 
depends on the strength of the applied field (our h). 
When this is substituted. the two results are seen to be 
of the same form.) I t  is worth noting that in the special 
casc of a smectic C, phase, the material parameters IC, 

and T~ in (7) are zero (for all i ) ,  so that in (22) we have 
A ,  = 4, = A ,  = A ,  = 0. Then (19)-(21) lead to the 

reduced system 

whose solution (subject to (23)) is again (24), with uo = 

O and with s, h and X related by (31), but with A defined 
by A:=A,A , .  System (34) is essentially equivalent to 
the one considered by Carlsson et al. [ 3 ]  (though they 
assumed u = O  at the outset); thus in the case of a 
smectic C ,  material, their no-permeation (u = 0) assump- 
tion leads to a consistent solution, and our results tally 
exactly with theirs in that case. 

5. Discussion 
The h-s relation (31) or (33) has infinitely many 

branches, for any value of the material parameter A .  It 
seems that this relation can make sense physically only 
if A satisfies 

( 3 5 )  O < A t l .  

For a given A inside this interval, the branch on which 
the growth rate s is largest (the ‘lowest’ branch) is the 
one that determines the stability of the system. It is 
found that instability arises (i.e. s > 0) for h > 1 .  with the 
lowest branch corresponding to 4. Q X < X,, where X,, 
( ~ 4 . 4 9 )  is the smallest positive root of the equation 
X ,  = tan X,. ‘Higher’ branches of the h -s curve corre- 
spond either to stable modes or to unstable modes with 
a smaller value of s, at any given field strength h. For 
A > 1 the growth rate s is positive even for h = 0, 
showing that the initial bookshelf state would be ‘mech- 
anically unstable’ even with no magnetic field present. 
Not only that, but in this case the higher branches 
correspond to modes with larger (positive) s, and indeed 
even at h=O there are modes with indefinitely large 
values of s, which presumably is unphysical. For A < 0 
there are jump discontinuities in the h-s relation for 
s > 0, meaning that the material would exhibit discon- 
tinuous behaviour, which is not to be expected physic- 
ally. In particular, for any A < 0 the system is unstable 
with a finite growth rate s, := 6/72 I A 1 (corresponding to 
small X )  for h = h;,  but is stable for h = h:, where 
h,:= [ 12(A - 1 ) / 7 ~ ~ A ] ~ ’ ~ ;  presumably such a jump in 
behaviour is unphysical. These observations suggest that 
only the case (35) can be of interest in modelling a 
smectic material that can attain an initial bookshelf 
configuration. 

Intcrestingly a ‘conventional’ static analysis predicts 
correctly the bifurcation point h = 1 (as asserted earlier), 
but the natural assumption from this, that the system is 
stable for h < 1 and unstable for h > 1, is valid only if 
O <  A <  1, as shown by our dynamical analysis. 
Furthermore the material parameter A depends only on 
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viscosity coefficients, which do not enter the static 
considerations. 

Given that the only difference between the forms of 
our solution and that of Carlsson et al. [3] is the 
expression for A in terms of viscosities (which themselves 
have not yet been measured experimentally!), we may 
assert that their discussion from page 471 onwards 
carries over to our solution, and so need not be repeated 
here. In particular they present figures showing, as 
functions of h, comparisons of the response time l/s and 
the wavenumber q with the corresponding quantities 
obtained when backflow is ignored (though strictly there 
is no such solution of the governing equations). Their 
diagrams (for A = 0.01, 0.1, 0 5  and 0.9) carry over to 
our solution; perhaps all that needs to be emphasized is 
that the response time is reduced when flow effects are 
taken into account. We may demonstrate this reduction 
in the response time as follows. First we set u = u = 0 in 
(19) and (23), and, following Carlsson et al. [ 31, ignore 
equations (20) and (21), to obtain 

(36) 
where so is the growth rate for the ‘negligible-backflow’ 
transition. This gives straight forwardly 

1 
s --(h2- 1). (37) O-2 

For a given h (> 1) we wish to compare s in (31 u) with 
so here. By (31 b) and (37) we may write 

and then we have 

s-s,=-+ 1 2X’tanX ( ;n ,X. . ) .  (39) 
2 n2(X- t a n x )  

which, we note, is independent of A. It is easy to show 
that the right hand side here is positive over the interval 
d X < Xo (for any A), so that s > so, meaning that 

the response time l/s is less than the prediction l/so that 
is obtained when backflow is neglected. This reduction 
in response time is found to be small when A is small, 
but becomes much more significant as A approaches 
unity ([see [3]). 

Finally we remark that, following [ S ]  and [3], we 
have considered only solutions of the type (24); there 
exist other solutions of (19)-(23), but these involve 
nonzero net fluxes parallel to the plates. 
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Note added in proof 
It has been suggested by a referee that there may exist 
solutions that involve nonzero pressure gradients paral- 
lel to the plates (unlike the solutions presented here and 
in [ 41); this possibility is being investigated. D
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